RPM packaging “the right way” (© 2003 by X/0S Experts in Open Systems BV

RPM packaging “the right way”

Jos Vos <jos@xos.nl>

X/0S Experts in Open Systems BV
Kruislaan 419
1098 VA Amsterdam
The Netherlands

March 28, 2003

1 Introduction

Software package management covers a wide range of aspects. For system administrators, it
provides a method for controlled installation, upgrade, removal, and consistency checks of
software components. During all those operations, the package system keeps track of the
status of installed files and maintains inter-package dependencies.

For software developers and maintainers, package management provides a structured and
trackable method for generating ready-to-install binary packages. Using package manage-
ment, it is possible to define an exact recipe for generating binary packages starting from
the original (pristine) source code. This recipe may include references to the original source
code, patches, additional scripts, commands for compiling and installing the software, and a
detailed list of package contents. You can also include implicit and explicit dependencies to
other packages.

Several different package management systems exist for UNIX and UNIX-like operating systems.
In the Linux-world, two advanced package management systems exist: the Debian package
management system (dpkg) and the Red Hat Package Manager (rpm). The rest of this paper
will focus on the details of rpm, that is used by many Linux distributions, including Red Hat
Linux, SuSE Linux, and Mandrake. The style of using rpm and writing rpm packages in some
aspects depends on the target Linux distribition.? Here, we will focus on writing packages for
Red Hat Linux.

This paper is not a tutorial on rpm packaging, nor is it a manual showing you all features of
rpm. Instead, it tries to give you some guidelines, hints, and tricks for building “good” and
maintainable rpm packages, although what is good or bad remains a matter of taste.

The Linux Standard Base project includes guidelines for writing distribution-independent packages.

RPM packaging “the right way” (© 2003 by X/0S Experts in Open Systems BV

2 Getting started

2.1 Sample spec file

A simple spec file for a imaginary package called mypkg looks like:

Name: mypkg

Version: 6.0

Release: XO0S.1

Source: ftp://ftp.xos.nl/pub/demo/mypkg—-6.0.tar.bz2
PatchO: mypkg—-6.0-config.patch

Patchl: mypkg-6.0-hotfix.patch

URL: http://www.xos.nl/

Packager: X/0OS Experts in Open Systems BV <info@xos.nl>

BuildRoot: %{_tmppath}/rpm-buildroot—-%{name}-%{version}-%{release}
Prefix: %{_prefix}

Summary: Demo package for rpm
License: GPL
Group: Development/Tools

%description
The mypkg package is only a demo package for rpm.

sprep
$setup —-q
$patch0 -pl
$patchl -pl

$build
./configure —--prefix=/usr
make

$install
make DESTDIR=%{buildroot} install

%$clean
rm -rf %${buildroot}

$files

%$defattr (-, root, root)

$doc README COPYING

%${_bindir}/*

%${_mandir}/manl/*

$dir %{_sysconfdir}/mypkg

%config(noreplace) %{_sysconfdir}/mypkg/*.conf

%$changelog
* Thu Mar 06 2003 Jos Vos <jos@xos.nl> 6.0-X0S.1
- Sample changelog entry.

In the next sections, we will look at spec files in more detail and explore more complex
examples. If you plan to package your own software, it is a good idea to create your own
template and use that as a base for new packages, in order to give your rpm’s a uniform style.
When you modify existing spec files of Red Hat Linux or other distributions, mark your own

RPM packaging “the right way” (© 2003 by X/0S Experts in Open Systems BV

changes with easily identifiable comment lines, so that porting your changes to newer versions
of the package will be easier.

2.2 Build environment

The default rpm build environment on Red Hat Linux systems is /usr/src/redhat. You
probably want to create a personal build environment in your home directory. This can be
realized by creating a file $HOME/ . rpmmacros with the following contents:

%_topdir /home/xo0s/rpm

The top directory should contain subdirectories named SPECS, SOURCES, BUILD, SRPMS,
and RPMS. Architecture-specific subdirectories of RPMS are automatically created when binary
packages are built. The $HOME/ . rpmmacros file can be extended to support GPG package
signing:

%_signature apg
%_gpg_path /home/xo0s/ . gnupg
%_gpg_name X/0S Experts in Open Systems BV <info@xos.nl>

In this case, rpm uses the key with the specified name for signing packages, using the keyring
in the standard GnuPG directory. You should also import your public key into rpm’s own
keyring, in order to let rpm check signatures of built packages on other systems. This can be
done with the rpm —-import command.

2.3 Macros

The rpm system provides you with many predefined macros and the ability to add custom
macros. Use them whenever you can, as it makes packages more portable and easy to maintain.
The command rpm ——showrc shows you the current rpm settings, including the predefined
macros. You can define your own macros in a spec file with the $define statement:

%define mymacro myvalue

In some cases you might want to reuse the same spec file for different instances of the package.
In that case, you can define your own macro on the rpm command line at the moment you
generate a package:

rpmbuild -ba —--define "mymacro myvalue" mypkg.spec

Use this feature with extreme care, as the resulting source rpm file does not reflect the value
of your dynamically set macro and is thus not the ultimate reference for regenerating the
binary rpm file, thereby nullifying one of the major advantages of rpm.

Macros are much more powerful than just substituting values, as they can also be used in
conditional expressions in the spec file (compare this with the #ifdef feature of the C
preprocessor):

%define krb5_support 1

%$if ${krb5_support}

RPM packaging “the right way” (© 2003 by X/0S Experts in Open Systems BV

telse

sendif
In this example, you can easily switch between a package with or without Kerberos support by
setting the value of the $krb5_support macro. This is especially useful in case one spec
file is used as a base for more versions of a distribution, where some features are not available

in all versions. Note that in that case you should also make a difference in release numbers
(see below).

3 Package headers

3.1 Identification

The spec file for a package starts with several key-value pairs, containing various information.
The Name and Version fields contain the name and version of the rpm package. In most
cases, packages have lowercase names, but sometimes, when the package is identified by a
specific combination of upper- and lowercase characters (i.e., ImageMagick or LPRng),
this is also used for the rpm package name.

Sometimes the original version number of a package contains a dash. As a version number of
a rpm package should not contain a dash, this has to be changed, e.g., by using an underscore
instead.

The Release field is defined by the rpm packager. As a package is uniquely identified by
the 3-tuple (name, version, release), the release number is usually reset to 1 for every new
version of a package. When you make your own packages, you have to decide what convention
to use. Original packages in Red Hat Linux in general use plain numbers, but you can also
add your own identification to make a distinction between Red Hat packages and your own
packages. At X/0S we use the convention to number our own packages X0S.1, X0S.2, ..., while
our versions of a Red Hat package with release (say) 6 are numbered 6.X0S.1, 6.X0S.2, ... As
with version numbers, release numbers may not contain dashes.

The Group field is a tree-style category, indicating to what group of software a package
belongs. It is used in some tools, of which the Red Hat Linux installer is the most important
example. The best way for choosing the group for a package is to look in which group a similar
standard Red Hat Linux package belongs. Another choice could be to make a local group (or
set of groups) and put all local packages in one of those groups.

3.2 Source and patch files

The Source and Patch fields contain either URL's or plain filenames of the source and patch
files. The last part is used as the filename in case an URL is specified. It is very important
to include an URL if the file can be found somewhere on the Internet. Although rpm itself
only looks at the plain filename, the URL is a great help for maintaining the rpm package
and makes it easier to find new versions. In some cases, especially with non-free software,

RPM packaging “the right way” (© 2003 by X/0S Experts in Open Systems BV

there are no URL's pointing directly to the software, for example because the download URL
is dynamically created after filling in a form. In those cases, it is a good idea to include
references to this form in a comment line, to make future upgrades easy to find.

Any number of source and patch files may be specified, using the field names Source0,
Sourcel, ..., Patch0, Patchl, ..., whereby omitting the number is the same as using num-
ber 0. These files may be referred to as $SOURCEO, $SOURCEL, ..., respectively $PATCHO,
..., in the rest of the spec file. The numbers do not need to be consecutive, so for large and
complex packages these fields can be numbered according to a logical structure. Red Hat's
kernel package contains patches up to Patch11030, while it (luckily...) does not include
11031 patches.

An useful feature of rpm is the ability to specify that certain sources and/or patches should
not be included in the source rpm (src.rpm) file. This is done with the NoSource and
NoPatch fields, containing a comma-separated list of source- or patch-numbers to be ex-
cluded.? This is used for non-free software, that may not be distributed. In that case, the
nosrc.rpm file, with everything except the excluded sources and patches, may still be dis-
tributed so that everyone can build their own binary packages for internal use in case they
have (legal) access to the software.?

3.3 Architectures, preconditions and requirements

In case your package only contains architecture-independent files, like with PHP or Python
packages, you should specify BuildArch: noarch in the header section. In that event, a
generic noarch.rpm file is created, instead of an architecture-specific package, like i386.rpm.

The rpm system automatically generates dependency information at the moment a binary
package is created. This behaviour can be disabled by specifying AutoRegProv: no. Fur-
thermore, additional dependency information can be included with the Provides and Re-
quires header fields. The automatic dependency mechanism can also be changed. In the
default setup, the scripts /usr/1ib/rpm/find-providesand /usr/lib/rpm/£find-
requires are used to calculate the dependency information. But if you redefine the
%__find_requiresand/or $__find_provides macros, a custom script can be used:

$define _ find provides %{_builddir}/%{name}-%{version}/my-find-provides
$define _ find requires %{_builddir}/%{name}-%{version}/my-find-requires

The custom scripts have to be specified with a full pathname. In case a script is included as a
source file, it can be referred to as $SOURCE2, for example.

ZRecent versions of rpm contain a bug, so that only one number is accepted in these fields. You then need to
include the NoSource and NoPatch fields once for every source/patch that you want to exclude.
3Some licensing conditions may even prohibit repackaging software for internal use.

RPM packaging “the right way” (© 2003 by X/0S Experts in Open Systems BV

4 Unpacking the source

The preparation phase, defined by the section of the spec file that starts with the $prep
keyword, is used for unpacking the source code and for applying local patches. A simple
example is:

$setup —-q

$patch0 -pl
$patchl -pl
$patch2 -pl

The $setup statement unpacks $SOURCEO in a quiet (-q) way. The $setup macro inter-
prets the source filename and can handle different formats and compression methods. This is
sufficient for most Linux software, which is distributed as .tar.gz or .tar.bz2 files.

Rpm by default assumes that the extracted source tree has a top directory named % {name}-
${version}. If this directory is named differently, the alternative name can be specified
with —n. And in the unusual case that the source archive does not contain a top directory
at all, the option —c can be specified, that creates a top directory with the standard name
before extracting the source archive. Finally, the —T option prohibits $setup from extracting
%$SOURCEDO, so this command just creates an empty top directory:

$setup -T -c

It is also possible to extract more source archives at once, for example with the following
command:

%$setup -q —a 1 -a 2

This extracts $SOURCEDO, goes to the just created top directory, and then extracts $SOURCE1
and $SOURCE2.

The $patch commands are all applied in the top directory, so for patches that include those
top directory in the pathnames of the patched files, the —p1 flag should be used. The number
behind $patch refers to the patch number to be used and omitting this number refers to
$PATCHO.

5 Compiling

The build phase, starting with $build, contains the recipe for compiling the package. The
current working directory at the beginning of the build phase is the top directory of the
package’s source tree, for example mypkg—6.0. A typical example for this phase is:

./configure —--prefix=/usr --mandir=/usr/share/man
make

Like in the $prep phase, several macros can be used to make the build recipe easier to write
and maintain. The first one is $configure. This macro is used as an abbreviation for calling
./configure with several standard arguments, like those shown above (see the output of
rpm —-showrc for all the arguments). Note that you can not use this if you want to create
a package that has its files in another place than the standard system directories.

RPM packaging “the right way” (© 2003 by X/0S Experts in Open Systems BV

Even handier than $configure is the fact that several standard paths used for compilation
and installation are available as macros. A few examples are listed here:

%$_bindir /usr/bin
%$_libdir /usr/lib
%_sbindir /usr/sbin
%_sysconfdir /etc

%_initrddir /etc/rc.d/init.d
%_datadir /usr/share
%_mandir /usr/share/man

Note that some macros are defined in terms of other macros, but for the sake of simplicity,
the final results are shown in the above table. It is a good idea to define your own macros, in
case you need some pathnames frequently in the spec file:

$define mylibdir %{_libdir}/mypkg

You can then use $mylibdir in all scripts and also in the $files section, and change it
very easily in future versions of the package.

If software does not need to be build, i.e. when it contains only PHP or Perl scripts or when
packaging binary software, the build recipe can be left empty.

6 Installing

6.1 Buildroot support

After the build phase, the installation of the software is done in the section starting with the
%$install keyword. The install recipe is usually the hardest part to write. The main reason
for this is that the software needs to be installed in a temporary directory, the so-called
buildroot. Note that rpm does not require this, but not using a buildroot environment for
installation simply means completely messing up the build system when generating packages,
which is highly undesirable and unmanageable.

There are a few ways to get a software package installed in a buildroot:

e The most popular method is to use the $makeinstall macro. Similar to $con-
figure, this macro is an abbreviation for make install with extra arquments to
redefine the paths in the Makefile, like prefix, bindir, and includedir, so that
they are prefixed with $buildroot. Using $makeinstall assumes that the Make-
file uses a standard set of make macros for installation paths.

e The second method is to manually specify an extra parameter (make variable) for instal-
lation in a different target root:
make install DESTDIR=%buildroot
To specify an alternative installation root directory, many packages support the DEST-

DIR variable in their makefiles, In some cases a similar variable with another name is
available, like ROOTDIR or TARGETDIR.

Although the above examples look simple, often reality is a bit more difficult. For some
packages the above examples will not work, either because the Makefile does not conform to

RPM packaging “the right way” (© 2003 by X/0S Experts in Open Systems BV

the usual format or because the package has no provisions for installation in a different root.
The install can be done “manually” if the package is simple. A complete $install recipe
would then look like:

rm —-rf %{buildroot}

mkdir -p %${buildroot}%{_bindir}

install -m 0755 src/mytool %${buildroot}%{_bindir}/

mkdir -p %${buildroot}%{_mandir}/manl

install -m 0755 man/mytool.l %{buildroot}%{_mandir}/manl/

Most software is not that small and so it is often easier to add a patch to support a DESTDIR
make variable by prefixing all target directories in install commands with $ (DESTDIR) and
inserting an initial DESTDIR= in the top of the Makefile to define its default value. And
if you send the patch to the software author/maintainer, it might be included in the next
release, eliminating the need to maintain it yourself.

If it is unclear what happens when installing , do a make -n install and see what
commands are executed.

6.2 Creating directories

First of all, always remove an existing installation target directory:

rm —-rf %${buildroot}

If you skip this step and the directory exists, it may be filled with undefined data, possibly
from a previous build (or build attempt).

Sometimes you may need to create the installation directories yourself, especially when the
software does not support alternative install directories by default.

You can either do this by including separate commands in the build recipe or by patching the
Makefile adding mkdir -—p commands.

If a directory must be created that belongs to this package (and thus is included), better use
install instead of mkdir -p:

install -m 0755 -d %${buildroot}%{_libdir}/mypkg

This enforces the mode of the created directories, something that you do want to control as
part of your package.

6.3 Customizing installation

In case you want to add your own files to the package, like an initialization script or a PAM
file, you can install them directly from the SOURCES directory:

mkdir -p %${buildroot}%{_initrddir}
install -m 0755 %SOURCE3 %{buildroot}%{_initrddir}/mypkg

mkdir -p %{buildroot}%{_sysconfdir}/pam.d
install -m 0644 %SOURCE4 %{buildroot}%{_sysconfdir}/pam.d/mypkg

RPM packaging “the right way” (© 2003 by X/0S Experts in Open Systems BV

Sometimes packages do not install files at the correct place in the directory tree to conform to
the Filesystem Hierarchy Standard. Often this is easy to fix, but some packages rely on having
their subdirectories and files in their own subtree. You can often overcome this by moving
parts of that tree to other places and add symlinks.

6.4 Non-root builds

Most of the time you can build your package as a non-root user, which is strongly recom-
mended. Some packages, however, explicitly change file permissions and ownerships during
installation. This usually happens when the package installs setuid- or setgid-programs. In
those cases, it is usually better to eliminate those changes by patching the Makefile and ex-
plicitly specify file permissions and ownerships in the $£iles section of the spec file (see
below).

7 Pre/post-install/uninstall scripts

7.1 Do’s and don't’s for scripts

The most often misused (or abused) part of rpm is the ability to define scripts that run on the
system where the package is installed. A few important things that should be kept in mind
when writing such scripts:

e The scripts should not be interactive. Unlike Debian’s dpkg, that provides a way to
interact and configure a package at installation time, rpm is not designed as such and
the scripts should run unattended.

e The scripts should not produce any output, so redirect any possible output (both stdout
and stderr) of commands used in the scripts to /dev/null.

e The scripts should be very robust and must check every precondition. To illustrate this
requirement: when a line is added or removed to a system-wide configuration file, the
script should first check if this has already been done.

e Minimize the number of utilities used in your scripts. All used utilities (or the packages
owning them) must be listed in the Preregq field of the package header. Very basic
utilties are assumed to be present and do not need to be listed.

If we ignore trigger scripts for now (more about those special scripts later), there are four
types of scripts that can be defined for the (un)installation phases.

7.2 Pre-install scripts

Only a few packages need a pre-install script, the spec file section that starts with $pre.
Only a few percent of the Red Hat Linux spec files include such a script, but for additional

RPM packaging “the right way” (© 2003 by X/0S Experts in Open Systems BV

packages (mosly application software) it is needed even less often. This type of script is for
example needed when a package requires an own user and/or group, because it contains files or
directories owned by that user. The useradd and groupadd utilities, used to create a users
and groups, are in the context of pre-install scripts usually called with explicit parameters for
uid and gid numbers, although this is not required.

7.3 Post-install scripts

A post-install script, starting with $post, is used more often. All packages including shared
libraries should include the command /sbin/ldconfig. Furthermore, all packages that
include a service start/stop script that has to be registered with /sbin/chkconfig need
to do this in the post-install script. Finally, a typical example of how included documentation
in the info format is handled:

if [-f %{_infodir}/mypkg.info.gz]; then
/sbin/install-info %{_infodir}/mypkg.info.gz %{_infodir}/dir
fi

This piece of code also illustrates how robust the scripts should be. One may wonder why the
test for the info. gz file is done, as the package is assumed to contain it. Well, rpm allows
a system administrator to install a package without installing files marked as documentation
(the very seldomly used ——excludedocs flag). In that case the info files are not installed,
but the post-install script is always executed. Many Red Hat Linux post-install scripts do not
test for this, and thus fail when the documentation files are not installed.

7.4 Pre-uninstall scripts

The pre-uninstall script, the $preun section in the spec file, is run just before the package
is uninstalled. At this point a service has to be stopped and unregistered:

if [$1 -eq 0]; then
/sbin/service mydaemon stop > /dev/null 2>&1
/sbin/chkconfig --del mydaemon

fi

Note the check on $1: this is the number of installed versions of the package after the
uninstall has been completed. In this case, the service actions will only be done if the pre-
uninstall script is not run during a package upgrade. Another example, showing how info files
can be handled:

if [$1 -eq 0]; then
if [-f %${_infodir}/mypkg.info.gz]; then
/sbin/install-info —--delete \
%${_infodir}/mypkg.info.gz %{_infodir}/dir
fi

This is the reverse action of the post-install script.

RPM packaging “the right way” (© 2003 by X/0S Experts in Open Systems BV

7.5 Post-uninstall scripts

The post-uninstall script is started by $postun in the spec file. Packages that include shared
libraries should at least contain the command /sbin/ldconfig. Packages that have cre-
ated their own user or group in the pre-install script must remove them in the post-uninstall
script.

As post-uninstall scripts are also run after a package has been upgraded, the following piece
of code is used to conditionally restart a service after the upgrade:

if [$1 —-ge 1]; then
/sbin/service mydaemon condrestart > /dev/null 2>&l
fi

Like with pre-uninstall scripts, the script’s argument is the number of installed versions of
the package after uninstalling it, so the conditional restart is not done when the package is
removed (rpm -e).

7.6 Non-shell scripts

By default, all the scripts are executed using /bin/sh as command interpreter. Optionally,
scripts can run using an alternative command interpreter, like in this example

$post -p /usr/bin/perl

Using other interpreters then /bin/sh is discouraged, as it is usually unnecessary and causes
extra dependencies. There is one frequently used exception:

$post -p /sbin/ldconfig

Here /sbin/ldconfig is executed directly, without first starting a shell. In such cases,
the script needs to be left empty, so it can only be used if this is the only command needed
in the script.

8 Trigger scripts

All scripts described in the previous section only run at the moment the package itself is
installed or removed, which is usually good enough. In some situations, however, a package
needs to perform actions that depend on the (un)installation of other packages. For this type
of actions, trigger scripts are designed. An example:

%triggerin —- setup
grep -q ' “myport’ /etc/services ||
echo -e "myport\t\t999/tcp\t\t\t\t# My Port" >> /etc/services

This script will be executed every time the setup package is installed (note that an upgrade
also implies an install). In this particular example, the advantages compared to using a post-
install script are:

RPM packaging “the right way” (© 2003 by X/0S Experts in Open Systems BV

e It is not required that the setup package is installed before this package is installed,
to ensure that the /etc/services file exists at the moment the script is executed.

e Asthe script is also executed after an upgrade (or re-install) of the setup package, it is
ensured that the action is not undone because the /etc/services file was replaced
during an upgrade.

Besides trigger-install scripts, there also exist trigger-uninstall scripts, starting with the
$triggerun keyword. They are executed every time another package is removed. Prac-
tice shows that there are very few cases that need trigger-uninstall scripts.

Like a normal script, a trigger script gets as first parameter the number of versions of the
current package installed after the (un)install action has been completed. In addition to this,
a second parameter is given, representing the number of installed versions of the package the
trigger script is referring to. In case of a trigger-uninstall script, this makes it possible to see
if the uninstall is part of an upgrade or if the package is completely removed.

9 Package files

9.1 File specification format

The $files section of the spec file defines the actual contents of the package. The list of
files and directories to include can be specified using shell-style wildcards, a feature that often
makes the file list very short (and easy to maintain).

When specifying a directory (or an expression that matches a directory), the whole subtree
starting at that directory is included. You should use the %dir directive to let only the
directory itself be included, not its contents.

For more complex packages, especially if you want to split the installed files into several
subpackages, you might want to consider generating the contents of the $files section(s)
in temporary files during the $install phase. You can refer to such a file, say REM-FILES,
by specifying it at the start of the $files section:

%$files -f RPM-FILES

The specified file is assumed to be in the top of the package’s source directory. If you use this
feature, you can still specify additional files explicitly.

For files that do not physically need to be included in the package, you can use the $ghost
tag. Those files are not included in the binary rpm package, but exist in the rpm database
and are also removed together with the package. This feature can for example be useful for
logfiles.

9.2 Determining the correct fileset

Be sure to include all files and directories that belong to the package. Especially package-
specific directories, like /usr/lib/mypkg, are often omitted. Because rpm creates all

RPM packaging “the right way” (© 2003 by X/0S Experts in Open Systems BV

parent directories at installation time, similar to what epio —d does, this problem might
not be detected immediately. Newer versions of rpm produce a warning when files in the
buildroot are not included in the generated binary package(s), but this rule does not apply to
directories.

On the other hand, you should not include non-package-specific files or directories. Remember
that specifying a directory includes the directory and everything below. So, do not specify
${_mandir} or ${_mandir}/*, but use ${_mandir}/*/* instead. The latter only
matches the manual page files, not the system directories.

If you are dealing with a large package and do not immediately have a good overview of all
the installed files, then (temporarily) add the following statement to the $install section

find %buildroot -print | sort > /tmp/install.log

and run rpmbuild -bi.

9.3 File attributes

All files should have the correct ownerships and permissions. This is usually done by start-
ing the $files section with $defattr (-, root, root) and explicitly override non-root-
owned files in the file list itself. As all file modes are taken over from the installed buildroot,
you have to be sure to install them properly or override the mode explicitly per file with the
$attr tag. As discussed earlier, the latter is recommended for setuid/setguid programs.

Mark all configuration files that belong to the package with $config. If you want to be sure
that the file is never replaced when a package is being upgraded, use $config (noreplace)
instead.

For some files, it makes no sense to let rpm verify certain attributes, like its md5sum, size, or
modification time. In that case, you can use the $verify tag to narrow down the verification
attributes, like $verify (not md5 size mtime).

Language-specific files can be marked as such with $1lang, like in $1lang (en). These files
will only be installed if the corresponding language is chosen at package installation time. For
standard language files, there is a more easy methode. At the end of the $install phase,
you can use:

%$find_lang %{name}

This creates a file ${name} . lang with all language-specific files found in standard directo-
ries like /usr/share/locale, prefixed with the proper $1lang () tag. This file than has
to be specified with $files —f£ and the language-specific files should not be listed anymore
in the $files section itself.

RPM packaging “the right way” (© 2003 by X/0S Experts in Open Systems BV

10 Special cases

10.1 Non-free software

Commercial, non-free software often comes with a binary installer. In general, there is no way
to see in advance what the installer does other then running it and try to find the installed
files back (which is usually not that hard). With some tricks, like the strings command,
it is often possible to manipulate the behaviour of the installer a bit by setting environment
variables. For example, for a package showing a license with more it was enough to set
PAGER=cat to avoid the paging.

If installers ask questions, use here-input to answer them. In that case it is also easy to prefix
installation directories with $buildroot. In some cases, the installer reads directly from
the terminal and you need an expect script to guide the installer. But it can be even worse:
Linux software exists that has a graphical-only installer, that does not allow you to write a
workaround to do an unattended installation. The last thing you can do then is writing clear
instructions to stdout in the $install phase and let the package builder click on some
buttons and fill in some fields.

When repackaging binary software, you probably want to set the following header fields:

ExclusiveOS: Linux
ExclusiveArch: i386

This specifies that the package should not be built on non-Linux and/or non-i386-based
systems.

10.2 Python software

Python software often includes support for the Python Distribution Utilities (distutils), that
makes building rpm packages very easy:

$build
%${_python} setup.py build

%$install
%${_python} setup.py install —--root=%{buildroot} —--record=RPM-FILES

$files —-f RPM-FILES
$defattr (-, root, root)

In the ideal case, the above example is enough for building a distutils-compliant Python
package.

RPM packaging “the right way” (© 2003 by X/0S Experts in Open Systems BV

10.3 Perl modules

Another example is the packaging of Perl modules. The following recipe is a generic template*
for Perl module spec files:

$build
%${__perl} Makefile.PL
make

$install
rm —-rf %${buildroot}

eval ‘%{__perl} ’'-V:installarchlib’®
mkdir -p %{buildroot}/$installarchlib
make PREFIX=%{buildroot}%{_prefix} install

eval ‘%{__perl} ’'-V:sitearchexp’"
find %{buildroot}${sitearchexp}/* -type d -print |\

sed "s| "%{buildroot}|%dir |" > RPM-FILES
find %{buildroot}/* -type £ ! —-name perllocal.pod -print |\
sed -e "s| "%{buildroot}||" \

-e "s|%{_mandir}\(.*\) |%{_mandir}\1*|" >> RPM-FILES

$files —-f RPM-FILES
$defattr (-, root, root)

Note that this example will not universally work for all Perl modules, as some modules require
extra parameters for building or have a different installation method. Furthermore, many Perl
modules depend on other modules, so you need to specify explicit dependencies.

11 Finally...

Several more things are worth mentioning, such as:

e Split the package into subpackages whenever appropriate. Reasons for splitting large
pieces of software into subpackages are:

— For libraries, the software is usually split into a base package with shared libraries
used by other programs and a development package (suffix —dewvel) with in-
clude files and static libraries. The latter does not need to be installed on non-
development systems.

- Software that includes both client and server side network services are often split
into a base package, including the libraries for client software, and a server package
(suffix —server) with the actual server (daemon).

- Software that includes both a graphical and a non-graphical front-end might be
split into a base package and a —x11 subpackage. This makes the base pack-
age installable on non-graphical (server) systems, where X11-related dependencies
usually can not be solved.

“This template can be used on Red Hat Linux 7.3, but it needs some modifications for newer releases.

RPM packaging “the right way” (© 2003 by X/0S Experts in Open Systems BV

e In case your package needs an init script, be sure it is compliant with the Red Hat Linux
scripts and choose the correct start/stop numbers in the chkconfig comment line. In
general, the first parameter of that line should be a dash, indicating that the service is
not enabled by default at the moment the service is registered with chkconfig.

e Always use a proper build environment. If you generate a package in an unclean envi-
roment, like with wrong versions of certain libraries, the result is undefined.

12 Conclusion

Building rpm packages is pretty easy, building rpm packages in “the right way” is not easy,
especially because a definition for “the right way” is partly a matter of personal taste and
experience. Even the official Red Hat Linux spec files make different choices for the same
problem at different places, depending on the person that maintains the package. If you want
(or need) to write your own spec files, try to develop an organization-wide (or personal) set
of guidelines, to ensure a consistent, distribution-compliant set of packages.

