
Concurrency Oriented Programming
in

Erlang

Joe Armstrong
Distributed Systems Laboratory

Swedish Institute of Computer Science
joe@sics.se

17 February 2003

1 Introduction

The starting point for this paper is the observation that
the real world, the world in which we live and breath
and are born in and die is concurrent. Paradoxically,
the programming languages which we use to write pro-
grams which interact with the real world are predomi-
nately sequential.

Using essentially sequential programming languages
to write concurrent programs is difficult and leads to the
notion that concurrent programming is difficult; indeed
writing concurrent programs in a languages like Java or
C++ which were designed for sequential programming
is very difficult. This is not due to the nature of concur-
rency itself, but rather to the way in which concurrency
is implemented in these languages.

There is a generation of languages, which includes
Erlang[9] and Oz[6], in which writing concurrent pro-
grams is the natural mode of expression. We argue that
modeling a real world application around the natural
concurrency patterns that are observed in the applica-
tion leads to code which is clear and easy to maintain
and this has significant advantages for early adopters of
the technology. Indeed several of the products devel-
oped by early adopters of Erlang have become market
leaders in their commercial niches, some examples of
these are given later in the paper.

This paper has a short overview of concurrent pro-
gramming followed by a brief tutorial introduction to
Erlang. Finally we describe a number of commercial
applications that were written in Erlang.

2 Does your language have pro-
cesses?

The notion of a process is well-known to programmers
and computer scientists, unfortunately very few lan-
guages or operating systems implement processes in a
way that makes then useful to the programmer.

Processes, for example, can be created in Java or
C++, but the mechanisms for creating processes are just
API’s which thinly disguised the process architecture
that exists in the underlying operating system.

In many languages the concurrency model of the lan-
guage is the same as the concurrency model of the un-
derlying operating system. If, for example, the under-
lying operating system uses a particular scheduling or
time slicing policy, then this property will be inherited
by the language. This also means that, for example, a
concurrent Java program running on one operating sys-
tem might have completely different semantics to a con-
current Java program running on a different operating
system.

This dependence upon the underlying semantics of
the operating system is particularly unfortunate since
most widely used operating system do not support light-
weight processes, nor do they allow very large numbers
of processes to operate concurrently.

We argue that concurrency should be a property of
the programing language and not a property of the oper-
ating system. We think that the concurrent behavior of a
program should be the same on all operating systems, as
regards all issues of synchronization, scheduling order,
etc. We believe that the only difference in behaviour



in moving a concurrent program from one machine to
another is that the program will run faster on a faster
machine etc; otherwise there should be no differences
in behaviour which depend upon the operating system.

Operating systems which only allow a limited num-
ber of processes result in weird programing practices
and in the belief that concurrent programming is “diffi-
cult”.

To illustrate this point we will use an analogy.
Suppose you could only create and use 3256 objects

in Java - and that if you created more objects the system
would slow down, grind to a halt and crash. Suppose
you were told that using more than 1000 objects was
very dangerous and that if you used more than 1000 ob-
jects your program would probably be very inefficient.
Suppose that, in order to have 2000 objects it would be
better to have 500 objects and use some form of 4-to-1
object merging scheme; suppose that if you wanted to
use 2000 objects and have the program run efficiently
you would have to have to re-write the garbage collector
and implement your own object management system.

If Java had the above properties then you might come
to the conclusion that object oriented programming was
difficult and a bad idea. This would have nothing to
do with the properties of objects per se and everything
to do with the terrible way in which they were imple-
mented.

To illustrate our contention that concurrency is
poorly implement in most systems we have performed a
number of measurements which show how long it takes
to create a new process,1 and how long it takes to send
a message between a pair of processes. These measure-
ments are performed for a number of different program-
ming languages and the results are shown in the next
two sections.

Process creation times

Figure 1 shows the time needed to create a process as a
function of the total number of processes in the system.
We observe that the time taken to create an Erlang pro-
cess is a constant 1 � s. up to 2,500 processes; thereafter
it increases to about 3 � s. for up to 30,000 processes.
The performance of Java and C# is shown at the top
of the figure. For a small number of processes it takes
about 300 � s. to create a process. Creating more than
two thousand processes is impossible.

1To be strict, we should say a lightweight process in Erlang or a
thread in Java or C#

Figure 1: Process creation time

Figure 2: Process creation time

Message passing times

Figure 2 shows the time to send a simple message2 be-
tween two concurrent processes running on the same
machine as a function of the total number of processes.
We see that for up to 30,000 processes the time to send a
message between two Erlang processes is about 0.8 � s.
For C# it takes about 50 � s. per message, up to the max-
imum number of processes (which was about 1800 pro-
cesses). Java was even worse, for up to 100 process it
took about 50 � s. per message thereafter it increased
rapidly to 10ms per message when there were about
1000 Java processes.

From the previous two sections we observe that pro-
cess creation and message passing times in Erlang are
one to two orders of magnitude faster than the equiva-

2in Java and C# this was the time to transfer private data between
two threads using a synchronized method call.



lent operation on threads in Java or C#.
Processes in Java or C# are pretty much like the ob-

jects in the flawed object system which we described
earlier - you can’t have many of them, and if you have
more than a few hundred processes the system will start
mis-behaving and to do any real work with them you
have to write your own scheduler and start combin-
ing multiple threads of control into single processes.
All of this gives concurrent programming a bad name
- and would probably make any sane person think that
concurrent programming was a difficult and should be
avoided whenever possible.

The opposite is true.

3 Concurrency Oriented Lan-
guages

An object oriented language is a language with good
support for objects. A concurrency oriented language
has good support for concurrency.

For a language to qualify as a “concurrent Oriented
Language” the following criteria should apply:

� We should be able to create large numbers of pro-
cesses.

� Processes creation and destruction should be an ef-
ficient operation.

� Message passing between process should be inex-
pensive.

� Processes should share no data and operate as if
they ran on physically separated processors.

In Erlang processes are light weight. This means that
very little computational effort is required to create or
destroy a processes. Light-weigh processes in Erlang
are one to two order of magnitude lighter than operating
system threads.3

Not only are Erlang processes light-weight , but also
we can create many hundreds of thousands of such pro-
cesses without noticeably degrading the performance of
the system (unless of course they are all doing some-
thing at the same time).

Erlang processes have share nothing semantics -
sharing no data leads to highly efficient code. Tradition-
ally concurrent programs used shared data, protected by

3Erlang programmers think of OS threads as terribly heavy weight
objects.

semaphores of mutexs, that reason being (supposedly)
to improve efficiency.

Precisely this sharing of data leads to a number of
problems which ultimately leads to performance degra-
dation.

Firstly, and most obviously, the program cannot eas-
ily be divided to run on multiple processors should the
need arise. If processes share data they cannot in any
simple manner be changed to run on physically sepa-
rated computers. Secondly, access of data through crit-
ical regions leads to over-synchronization of processes
and in programs being more sequential than they need
to be.

In Erlang, processes share no data and the only way
in which they can exchange data is by explicit message
passing. Erlang message never contain pointers to data
and since there is no concept of shared data, each pro-
cess must work on a copy of the data that it needs. All
synchronization is performed by exchanging messages.
The main reason for disallowing pointers in messages
and for requiring processes to work with a copy of the
data was to simplify programming fault-tolerant sys-
tems. Systems with distributed data containing “dan-
gling” pointers are very difficult to program in the pres-
ence of hardware failures - we took the easy way out,
by disallowing all such data structures.

Constructing systems, as opposed to individual pro-
grams, using the philosophy of share-nothing processes
has several significant advantages:

� The system is easily distributable - to turn a non-
distributed program into a distributed program can
often be achieve by merely allocating the different
parallel processes to different machines.

� The system is easily made fault tolerant - this
can be achieved by arrangements of processes into
“workers” and “observers.” The worker processes
perform computations, and the observer processes
observe the workers and perform error recovery if
anything goes wrong in a worker process. The
worker and observer processes can run on the
same machine (for local error recovery) or on
physically separated machines (for building fault-
tolerant systems).

� The system is easily scalable - this can be achieved
by adding more processors and moving processes
between processors.



3.1 A Web Server in Erlang

A web server is a typical application which benefits
from concurrency. YAWS4 is an web server written
entirely in Erlang. A typical web server must man-
age large numbers of concurrent sessions - the so called
“Keep Alive” persistent sessions of HTTP/1.1 benefit
from the ability to handle large numbers of concurrent
sessions. In an experiment involving a cluster of 16
machines we measured the performance of YAWS and
Apache[1] under conditions of overload. We simulated
a denial of service attack by loading the server with a
large number of slow parallel sessions and then mea-
sured the throughput of the server for genuine traffic as
we increased the number of attacking client processes.

Figure 3 shows the throughput of Apache and YAWS
in KBytes/second as a function of the number of parallel
sessions (overload) that the servers are subject to.

For low load Apache and Yaws perform equally well
and the throughput is about 800 KBytes/sec.

As we increase the load up to up to 80,000 disturbing
processes the throughput of the Erlang server remains
essential unchanged. The Apache web server degrades
slightly, but then crashes when it has to maintain more
than about 4,000 parallel sessions. Recall also, as we
showed earlier that both java and C# could not han-
dle more than about 2,000 concurrent processes. What
we are observing here is a limitation in the underly-
ing operating system. The only way to avoid this is to
re-implement scheduling and processes management in
the run-time system for the language involved.

Erlang happily manages 85,000 processes with lit-
tle observable degradation in performance - as far as
the host operating system is concerned Erlang has only
used one or two processes.

The difference in performance between the Erlang
web server and the Apache system is dramatic. Under
conditions of low load - Apache and Yaws have similar
performance - under high load during a simulated de-
nial of service attack Yaws outclasses Apache. Indeed,
it proved impossible to break the Erlang server using
16 attacking machines - though it was easy to stop the
Apache server.

This example, nicely demonstrates systems written in
sequential languages (like C) on conventional operating
systems perform badly in the presence of massive con-
currency - whereas systems written in Erlang performs
well.

4Yet Another Web Server[13]

Figure 3: YAWS - an Erlang web server

3.2 Why is COP Nice?
We believe that concurrency oriented programming is desir-
able for a number of reasons:

� The world is parallel.
� The world is distributed.
� To program a real-world application we observe the con-

currency patterns = no guesswork (only observation, and
getting the granularity right).

� Our brains intuitively understand parallelism (think
driving a car).

� Our programs are automatically scalable, have auto-
matic fault tolerance (if the program works at all on a
uni-processor it will work in a distributed network)

� Make more powerful by adding more processors.

The points need little explanation, the world is parallel and
distributed - trying to model this behaviour in a sequential
language is very difficult.

In teaching Erlang for programming real-world applica-
tions we emphasize the importance of observation. We try
to observing the concurrent patterns in the application and the
message passing channels and we map these in a 1:1 manner
onto a set of Erlang processes and messages. This method
takes the guesswork out of program design and replaces it by
observation. Programs designed and written in this manner
have a clear and logical relation to the problem that they are
designed to solve - students are often surprised at how easy
this is and soon learn that the observed concurrency structure
of the problem drives the solution in a natural way.

Trying to force a naturally concurrent problem into a se-
quential framework is difficult and error prone.

We can speculate that are brains are especially suited for
perceiving patterns of concurrency since we manage com-
plex tasks involving hundred or thousands of parallel activities



without conscious thought - if this were not possible everyday
activities like driving a car would be impossible.

The final point, was discussed earlier. Scalability, and
fault-tolerance are often achieved by a simply moving pro-
cesses between processors - this is a consequence of the
“share nothing” philosophy of program construction.

3.3 What is Erlang/OTP?

Erlang is a concurrent programming language with a func-
tional core. By this we mean that the most important property
of the language is that it is concurrent and that secondly, the
sequential part of the language is a functional programming
language.

The sequential sub-set of the language expresses what hap-
pens from the point it time where a process receives a message
to the point in time when it emits a message. From the point
of view of an external observer two systems are indistinguish-
able if they obey the principle of observational equivalence.
From this point of view, it does not matter what family of
programming language is used to perform sequential compu-
tation.

It is interesting to note that during it’s life Erlang started off
with a logical core (Prolog[2]) which later evolved into a func-
tional core. The functional core is a dynamically typed, strict,
higher-order functional language and is, in it’s own right, a
small and powerful programming language.

One of the surprising things about Erlang is that the func-
tional core language is itself a useful programming language
- so surprisingly even purely sequential applications writ-
ten in Erlang often outperform applications in languages
which were designed for purely sequential processing. In-
deed, at the 2002 Erlang users conference Balagopalakrishnan
and Krishnamachar[4] reported work at Lucent technologies
showing that Erlang was six times faster than Perl for a num-
ber of applications.

OTP[7, 11] stands for Open Telecom Platform, OTP was
developed by Ericsson Telecom AB for programming next
generation switches and many Ericsson products are based on
OTP. OTP includes the entire Erlang development system to-
gether with a set of libraries written in Erlang and other lan-
guages. OTP was originally designed for writing Telecoms
application but has proved equally useful for a wide range of
non-Telecom fault-tolerant distributed applications.

In 1998 Ericsson released Erlang and the OTP libraries as
open source.

Since its release OTP has been used increasingly outside
Ericsson for a wide range of commercial products, we will
describe some of these later in the paper.

OTP represents the largest commercial use of a functional
programming language outside academia.

4 Erlang in 11 minutes

The next few sections proved a simple introduction to Erlang
through a number of examples, for more examples see[9].

4.1 Sequential Erlang in 5 examples

1 - Factorial

-module(math).
-export([fac/1]).

fac(N) when N > 0 -> N * fac(N-1);
fac(0) -> 1.

> math:fac(25).
15511210043330985984000000

2 - Binary Tree

lookup(Key, {Key, Val, _, _}) ->
{ok, Val};

lookup(Key,{Key1,Val,S,B}) when Key<Key1->
lookup(Key, S);

lookup(Key, {Key1,Val,S,B}) ->
lookup(Key, B);

lookup(Key, nil) ->
not_found.

3 - Append

append([H|T], L) -> [H|append(T, L)];
append([], L) -> L.

4 - Sort

sort([Pivot|T]) ->
sort([X||X <- T, X < Pivot]) ++
[Pivot] ++
sort([X||X <- T, X >= Pivot]);

sort([]) -> [].

5 - Adder

> Add = fun(N) -> fun(X) -> X + N end end.
#Fun
> G = Add(10).
#Fun
> G(5).
15



4.2 Concurrent Erlang in 2 examples
1 - Spawn

Pid = spawn(fun() -> loop(0) end)

2 - Send and receive

Pid ! Message,
.....

receive
Message1 ->
Actions1;

Message2 ->
Actions2;
...

after Time ->
TimeOutActions

end

4.3 Distributed Erlang in 1 example
1 - Distribution

...
Pid = spawn(Fun@Node)
...
alive(Node)
...
not_alive(Node)

4.4 Fault tolerant Erlang in 2 examples
1 - Catch/throw

...
case (catch foo(A, B)) of

{abnormal_case1, Y} ->
...

{’EXIT’, Opps} ->
...

Val ->
...

end,
..
foo(A, B) ->

...
throw({abnormal_case1, ...})

2 - Monitor a process

...
process_flag(trap_exit, true),
Pid = spawn_link(fun() -> ... end),
receive

{’EXIT’, Pid, Why} ->
...

end

4.5 Bit syntax in 1 example

Erlang has a “bit syntax” for parsing bit aligned data fields in
packet data. As an example we show how to parse the header
of an IPv4 datagram:
Dgram is bound to the consecutive bytes of an IP datagram

of IP protocol version 4. We can extract the header and the
data of the datagram with the following code:

-define(IP_VERSION, 4).
-define(IP_MIN_HDR_LEN,5).

DgramSize = size(Dgram),
case Dgram of
<<?IP_VERSION:4, HLen:4,
SrvcType:8,TotLen:16,ID:16,Flgs:3,
FragOff:13,TTL:8,Proto:8,HdrChkSum:16,
SrcIP:32,DestIP:32,Body/binary>> when
HLen >= 5,4*HLen =< DgramSize ->
OptsLen = 4*(HLen-?IP_MIN_HDR_LEN),
<<Opts:OptsLen/binary,Data/binary>>
= Body,

...
end.

4.6 Behaviors

Many common programming patterns5 in Erlang can be cap-
tured in the form of higher-order functions.

For example, a universal Client - Server with dynamic code
update can be written as follows:

server(Fun, Data) ->
receive

{new_fun, Fun1} ->
server(Fun1, Data);

{rpc, From, ReplyAs, Q} ->
{Reply, Data1} = Fun(Q, Data),
From ! {ReplyAs, Reply},
server(Fun, Data1)

end.

Here, the semantics of the server is completely determined
by the function Fun. By sending a message of the form
{new_fun, Fun’} the semantics of the server will change
without having to stop the system.

The server is accessed by calling the routine rpc which is
as follows:

5Called behaviors in Erlang.



rpc(A, B) ->
Tag = new_ref(),
A ! {rpc, self(), Tag, B},
receive
{Tag, Val} -> Val

end

4.7 Programming Simple Concurrency
Patterns

How can we program common concurrency patterns? The
following diagram shows the four most common concurrency
patterns:

Reading from the left, these can be programmed as follows:

Cast
A ! B

Event
receive A -> A end

Call (RPC)
A ! {self(), B},
receive
{A, Reply} ->

Reply
end

Callback
receive
{From, A} ->

From ! F(A)
end

These four concurrency patterns account for a large pro-
portion of all programming.

Entire industries are built around the remote procedure call
(the first of our patterns with two messages) - well known
protocols like HTTP and SOAP are just disguised remote pro-
cedure calls with bizarre and difficult to parse syntaxes.

The callback model (the second pattern with two messages)
leads to entire school of “callback” programming - commonly
found in windowing systems.

4.8 Programming Complex Concurrency
Patterns

The last section dealt with the four simplest concurrency pat-
terns, it is tempting to ask how we should program complex
concurrency patterns.

The following diagram illustrates two slightly more com-
plex concurrency patterns.

The figure to the left shows a callback occurring within a
remote procedure call, to the right is a parallel set of remote
procedure calls (here we dispatch three queries and wait for
the return values which might come back in any order.

These are simply programmed in Erlang. Callback within
a PRC can be written:

A ! {Tag, X}, g(A, Tag).
g(A, Tag) ->
receive

{Tag, Val} -> Val;
{A, X} ->
A ! F(X),
go(A, Tag)

end.

and parallel RPC:

par_rpc(Ps, M) ->
Self = self(),
Tags = map(

fun(I) ->
Tag = make_ref(),
spawn(
fun() ->

Val = rpc(I, M),
Self ! {Tag, Val}
end),

Tag
end, Ps),

yield(Tags).

yield([]) ->
[];

yield([H|T]) ->
Val1 = receive

{H, Val} -> Val
end,
[Val1|yield(T)].

4.9 Commercial application of Erlang
In 1998 Erlang and the OTP system was released into the
public domain subject to an Open Source license. Since that
time a number of different companies have adopted Erlang
and used it to build commercial products.

The following major products are discussed:



� AXD301
� GPRS
� Nortel SSL accelerator
� Bluetail - mail robustifier

AXD301

The AXD301[5, 8] is a fault-tolerant carrier-class ATM
(Asynchronous Transfer Mode) switch manufactured by Er-
icsson Telecom AB.

The AXD has 11% of the world market share for carrier
class ATM switches making it the market leader in this market
segment.

The measured reliability[10] is quoted as being
99.9999999% (9 nines) corresponding to a down time
of 31 ms. year! - this makes it one of the most reliable
switches ever made. Some of the techniques used to achieve
this reliability are described in[12].

British Telecom use the AXD301 in their telephony and
data backbone, the system is currently handling 30-40 million
calls per week per node and is the world’s largest telephony
over ATM network.

The AXD301 has 1.7 million lines of Erlang, making it the
largest functional program ever written.

Bluetail

Bluetail AB was founded in 1998 by the author and his col-
leagues to exploit the Erlang technology. Three months after
we started our first product, the Bluetail mail robustifier[3],
had been programmed and sold.

Bluetail’s motto was Bringing Reliability to the Internet -
we made a number of products designed to increase the re-
liability of existing Internet services. These products could
be brought to market quickly (usually the entire product cy-
cle was about three months) and were programmed predomi-
nantly in Erlang.

In 2000 Bluetail was acquired by Alteon Web Systems, and
in the same year Alteon was acquired by Nortel Networks, but
continued operations under its own name. Since 2000 Alteon
have produced a number of dedicated servers written predom-
inately in Erlang.

Alteon SSL Accelerator

Following the purchase of Bluetail AB by Alteon Web Sys-
tems the first product developed in Erlang was the Alteon
SSL accelerator. This product rapidly became the most pop-
ular product6 for dedicated SSL appliances 48 percent market
share in the first half of 2002.

6according to Infonetics Research

GPRS

The Ericsson GRPS system is written mainly in Erlang - it is
market leader having 45% of world market.

Minor products

In addition to the major products a number of minor commer-
cial products are known to be under development - these range
from traditional Telecoms applications to transaction based
banking systems.

As of 14 February 22 Source source projects using Erlang
were underway, together with a large number of individual
projects.

References

[1] http://www.apache.org/.

[2] J. Armstrong, S. Virding, and M. Williams. Use of
Prolog for Developing a New Programming Language.
In C. Moss and K. Bowen, editors, Proc. 1st Conf. on
The Practical Application of Prolog, London, England,
1992. Association for Logic Programming.

[3] Joe Armstrong. Increasing the realibility of email ser-
vices. In Proceedings of the 2000 ACM symposium on
Applied computing 2000, pages 627–632. ACM Press,
2000.

[4] Anand Balagopalakrishnan and Bagirath Krishna-
machari. Helga - a call load generator written in er-
lang/otp. In Erlang 2002 User Conference. Ericsson,
November 2002.

[5] Stafan Blau and Jan Rooth. Axd301 - a new generation
atm switching system, 1998. Ericsson Review Number
1, 1998.

[6] Mozart Consortium. The Mozart Program-
ming System, January 1999. Available at
http://www.mozart-oz.org/.

[7] Ericsson. Open Telecom Platform—User’s Guide, Ref-
erence Manual, Installation Guide, OS Specific Parts.
Telefonaktiebolaget LM Ericsson, Stockholm, Sweden,
1996.

[8] Jan Höller. Voice and telephony networking over atm,
1998. Ericsson Review Number 1, 1998.

[9] C. Wikström J. Armstrong R. Virding and M. Williams.
Concurrent Programming in Erlang. Prentice-Hall, En-
glewood Cliffs, NJ, 1996.

[10] private communication.

[11] Seved Torstendahl. Open telecom platform, 1997. Eric-
sson Review Number 1, 1997.



[12] Ulf Wiger, Gösta Ask, and Kent Boortz. World-class
product certification using erlang. In Proceedings of the
2002 ACM SIGPLAN workshop on Erlang, pages 24–
33. ACM Press, 2002.

[13] Claes Wikström. Yaws - yet another web server. In Er-
lang 2002 User Conference. Ericsson, November 2002.


